∞ ist prinzipiell kein Element einer Zahlenmenge. Addition, Multiplikation, inverse und neutrale Elemente lassen sich auf ∞ nicht anwenden, da ∞ nunmal nicht Element einer entsprechenden Menge ist.
Erstens ist das doch wohl eine zirkuläre Argumentation, und selbst wenn man dies bereinigt, läuft es offensichtlich auf die altbekannten Rückzugsgefechte heraus, die immer dann ausgefochten werden, wenn's um Bereichserweiterungen geht:
1/2 ist keine Zahl, -1 ist keine Zahl, i=sqrt(-1) ist keine Zahl, ∞ ist keine Zahl usw. Auch hier sind manche Operation in der alten, nicht erweiterten Menge nicht möglich.
Selbst unsere FPUs kennen unendlich (geanuer sogar zwei mit Vorzeichen) und können damit rechnen, zB 1/0 = ∞, (-1/0) = ∞ etc. Und anders als
(FPUs liefern beim Vergleich zweier "Unendlich" typischerweise auch "false".)
behauptet liefern sie auch das richtige Ergebnis: ∞=∞ und (-∞)=(-∞) (vielleicht er aber auch ∞ mit -∞ verglichen).