Nun die konkrete, für mich schwer formulierbare Frage: Heißt das, dass es mehrere Ebenen von der Unendlichkeit gibt bzw. die "Zahl" Unendlich nicht direkt unendlich ist, sondern von bestimmten Faktoren (beispielsweise Radius & Flächeninhalt vom Kreis) abhängig ist?
Im Prinzip ist das eine generelle Fragestellung der Kontinuitätshypothese. Diese behauptet folgendes:
Es gibt eine Menge P, sodass |N| < |P| < |R|, wobei |K| die Mächtigkeit der Menge K beschreibt.
Wir wissen lediglich, dass |N| = |Z| = |Q| < |R| (Cantors Diagonalisierungsargument), sowie dass - in den wichtigsten Axiomensystemen, nämlich PA und ZFC - diese Aussage weder beweisbar, noch widerlegbar ist (Bewiesen von Kurt Gödel und Paul Cohen).
Die Frage ist eines der berühmtesten Beispiele für unentscheidbare Sätze, deren Existenz (unter hoffentich wahren Umständen) von Gödel in seinem 1. Unvollständigkeitssatz bewiesen wurde. Dieser hatte auch vorgeschlagen, ZFC durch Axiome, welche Kardinalzahlen aufgreifen, zu erweitern. Damit könnte CH bzw. GCH, und somit auch deine Frage entschieden werden.
Folglich: Wir kennen bisher 2 Varianten von "unendlich": Abzählbar unendlich (|N|), und überabzählbar unendlich (|R|). Obs mehr davon gibt oder nicht, ist mit den bisherigen Regeln der Mathematik nicht zu beantworten.
greetz
Mike